
 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

51

AIOPS FRAMEWORK FOR ALERTING

PERFORMANCE ISSUES IN MICROSERVICES

USING TIME SERIES FORECASTING

Jaskirat Singh

Systems Engineer

Tata Consultancy Services, Delhi, India

Shobitha Shyamsundar

Associate Consultant

Tata Consultancy Services, Chennai, India

Abstract— For large scale applications based on

Microservices architecture and hosted on scalable

platforms like Pivotal Cloud Foundry or OpenShift, it is

imperative to monitor the performance of microservices on

a continuous basis and trigger performance critical alerts

upfront when abnormal patterns are observed in the

immediate past. One of the critical application

performance indicators is Major Garbage Collection

(Major GC), an increase of which causes application

performance bottlenecks and might indicate insufficient

memory allocation to the JVM or a potential memory leak.

In this paper, we discuss a solution built using machine

learning Algorithms that forecasts Major GC cycles

(Number of Major Garbage Collection) of business critical

microservices for the near future time periods. This paper

discusses various algorithms within python’s stats models.

tsa package that were explored and details the concepts

and results of forecast models trained using Seasonal

Autoregressive Integrated Moving Average, or SARIMA

algorithm that was finally considered for forecasting based

on model performance. The paper also elucidates the

Forecast accuracy of the model, showing results of the

forecast vs actual occurrences of Major Garbage

collection. The objective of this solution based on AIOps

framework is to enable development and production

support teams get proactive notification when forecast

Major GC patterns breach the set threshold limits, so that

corrective action can be taken to improve the application

performance by reducing frequency of Major GC cycles.

Keywords— Machine Learning, Time series Forecasting,

Major Garbage Collection, Microservices, SARIMA, Java

Virtual Machine (JVM), Key Performance Metrics.

I. INTRODUCTION

Although Major Garbage Collection (Major GC) is a core

feature of Java and Android-based systems used for automatic

memory management tasks, it also comes with a performance

cost [1, 2, 3, 4]. The length and frequency of the long delays

(e.g., in seconds or minutes) imposed by Major GC overhead

can potentially impact the performance of distributed systems

that require fast response time and high throughput [5,6,7].

For better system performance, it is necessary to have very

few Major GC events with short delays (e.g., in milliseconds)

[8]. The possible reason that triggers excessive Major GCs is

either potential memory leak in the application or insufficient

memory allocation to the Java Virtual Machine (JVM) [9]. For

preventing occurrences of Major GC overhead, we proposed a

novel AIOps framework which focuses on monitoring

anomalous Major GC scenarios in real time using an efficient

forecasting algorithm to avoid performance related issues. We

considered Major GC forecasting for business critical

microservices to identify whether the forecast exceeds the

threshold limits for early detection of performance overhead.

The motivation behind the proposed research is to provide

automation in performance monitoring operations, early

detection, and prevention of performance issues at the

enterprise level for large scale distributed systems using AI

and assist performance testers to promptly make decisions by

using the integrated AIOps framework for real-time

visualization of Major GC anomalies in microservice.

Particularly, the framework performs faster and accurate real-

time detection of possible Major GC spikes in future time-

period. Thus, mitigating the risks involved due to performance

degradation that eventually leads to decrease volume of

customers, financial losses, and reputational damage.

II. RELATED WORK

Major GC is a fundamental performance metric used for

automatic memory management operations in large-scale

applications based on the Spring Boot Java framework.

However, frequent Major GCs in any microservices indicate

potential memory leaks or inadequate memory allocation to

the JVM which deteriorates the overall application

performance by interrupting the connected programs. Previous

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

52

studies have aimed at developing engines to automatically

produce benchmarks for capturing the intricacies in Major GC

behaviour of java-based systems [10,11,12]. The major

challenge experienced by the researchers is to have an ideal

load balancing strategy or Java benchmark while testing Major

GC related scenarios due to the non-deterministic nature of

Major GC which tends to influence the configuration

complexity of the application [13, 14, 15, 16]. In-order to

enhance the system performance in respect of throughput or

response time, there is a need to prevent the impact of Major

GC overhead. Therefore, it is highly essential to forecast

Major GC patterns for detecting the non-deterministic

scenarios and evaluate the performance impacts for tackling

performance issues in advance. To help address this challenge,

our research outlines a novel AIOps framework where

complex and time-varying Major GC performance anomalies

are detected in future time using a Statistical Machine

Learning Model based on captured real time data. The model

accurately predicts the future occurrences of potential Major

GC overload, which can cause a long pause time on the

underlying application. Overall, the framework provides

performance engineers with insights into the upcoming

situations and enables them to take timely corrective actions to

avoid performance overload instances in advance to achieve

better system performance.

III. BACKGROUND

A. Garbage Collectors

Garbage Collector provides an automatic management of

memory by a program. Garbage collection is a method of

reclaiming the space used by unreachable objects [16], it

solves many problems such as dangling reference problem,

space leak problem etc. that programmer use to face

previously due to explicit memory management via code. But

does not solve many performance issues associated with heap

and drawbacks associated with GC algorithms. GC itself is a

complex task taking time and resources of its own. One of the

most widely used GC collection technique is Generational

Collection. When using this technique, the heap memory is

divided into generations. The configuration of most frequently

used generation technique has two generations, one for young

objects and other for old objects. Young generation collections

also termed as Minor GC collection [1]. Objects that survive

young generation collection are eventually promoted to old

generation. This old generation space is typically larger than

young generation and the object allocations in this space

happens more slowly. As a result, old generation collections

also termed as Major GC collections are infrequent and takes

significantly longer time to complete. There are 4 types of

generational garbage collections, Serial, Parallel (one more

subtype called Parallel Compacting), CMS (Concurrent Mark-

Sweep Collector) and G1(Garbage-First Collector). CMS

exhibits better performance when compared to other collector

types. It is specially designed for applications that requires

shorter GC pauses and allows parallel GC collection along

with application threads. Regardless of the GC collection

types (viz. algorithms), stop-the-world is inevitable for any

type of collector at some point of time during the garbage

collection process. During stop-the-world, the execution of all

the application threads is halted when collection takes place.

Though CMS tries to reduce the pause time due to Major

collections, it pauses all the application threads for a brief

period at the beginning of the collection and again towards the

middle of the collection [16]. Steps of typical Concurrent

Mark and Sweep collection cycle are discussed in [16]. Some

of the common failures associated with CMS, i.e., Concurrent

Mode Failure, Floating Garbage and Pauses twice during

collection process are detailed in [16].

B. Infrastructure landscape and Volumes handled

This section provides an overview of the production

infrastructure owned by a leading global multinational

consumer bank and financial services company. The

production infrastructure hosts over thousands of

containerized microservices on private “application” PaaS,

Pivotal Cloud Foundry (PCF) [17] [18]. Containerized

microservices deployed in PCF supports various business

critical functionalities such as Gateway operations,

Authentication, Account information, Payment and other

services. The Gateway services, also called PCF platform

services, form the first layer of containerized microservices

receives over 0.3 million requests every minute on normal

days and more than 0.5 million requests every minute on peak

days. Most of front and backend microservices receives high

volumes every minute and has strict SLA requirements to

ensure very fast response times and high throughput.

Depending on the Non-Functional requirements (NFRs), each

microservice is allocated multiple virtual instances (viz nodes)

to process incoming and outgoing traffic. The size of each

node or instance is determined based on the breakpoint test

results executed by performance certification teams. The

break-point tests are performed to identify the maximum load

bearing capacity of single node for set of functionalities

supported by a particular microservice. Total number of nodes

to be configured for a given microservices is set based on the

total throughput requirements given by business as part of

NFRs and capacity of the single node as determined during

breakpoint tests.

IV. PROBLEM STATEMENT

Major GC collections may impact application performance and

throughput significantly. As the JVM heap sizes grow, the

impact due to Major GC collections increases as the

application must have to pause for a longer duration to allow

JVM to perform GC. High frequency of Major GC can

deteriorate application throughput, cause user-session time-

outs, force nodes of microservices to fail, or cause intense

losses to business. Selection of garbage collector types or using

incorrect settings can greatly increase pause times or even

cause out-of-memory crashes. On analyzing the patterns of key

performance indicators for any kind of application or

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

53

microservice, in majority of the cases, patterns leading to

problematic performance can be figured out as it either shows

repeating high spikes with abnormal trends or increasing trends

over certain periods of time or periodic spikes crossing set

thresholds. The objective of this work is to forecast the number

of Major Garbage collections for a specific time period in

future and use this information in the decision-making process

to proactively enable planning for restarts of nodes, or adding

more nodes to a particular microservice‟s tier or enable teams

to switch on additional loggings to capture dumps of garbage

collection statistics, heap, thread, and deadlock data in

production just before the forecasted time period so the

engineering teams can permanently fix the root cause. The

objective is to keep number of GCs with long pauses to

minimum to enable improvement in the performance of

microservices.

V. TIME SERIES FORECASTING

This paper focusses on Timeseries forecasting, a quantitative

forecasting method which is performed based on the data and

any repetition in its past patterns. Time series forecasting is an

important area of machine learning [19]. It is important

because there are so many prediction problems that involve a

time component. This method helps in capturing any complex

patterns which human cannot identify. Some of the

fundamental terms related to working with time-series data are

Time Series Data, Time Series Analysis and Time Series

Forecasting.

 Time Series Data: Any data that has time component

involved is termed as a time-series data.

 Time Series Analysis: Studying on a time-series data to

find useful perceptions and patterns is termed as time-

series analysis [20].

 Time Series Forecasting: Time series forecasting is

essentially focusing at the historical data to make

estimates into future

As described in earlier sections making this time-series

forecast can be beneficial to the Performance Engineering

and Production support team as it would help them take

some crucial decisions as follow:

 When nodes / application server instances can be

restarted?

 When more nodes can be added to a particular

microservice that was seen with frequent or high Major

Garbage collections in future (forecast time) and in the

past?

 Which particular Microservices out of many can be

considered for in-depth investigations in-order to identify

the root causes that are driving high Major GC

occurrences?

Basic steps of Time Series Forecasting involve,

1. Problem Definition (discussed in earlier sections)

2. Data Collection & Analysis

3. Data Preprocessing

4. Build and Evaluation of Forecast Models

A. Model Methodology Overview

A brief overview of different steps of time series forecasting

has been discussed as follows:

A.1 Data Collection & Analysis

For key microservices in production, Major GC events data

(or any performance metric) captured by AppDynamics are

collected periodically in a Telemetry Data Lake, and the data

is stored at granularity of 1 minute interval using Splunk

indexes for long term data monitoring and analysis. The Major

GC events stored in Telemetry are downloaded periodically to

the application specific data store via Offline batch jobs and

are further aggregated (using max value) to one event per 30-

minute interval using python functions. Major GCs is a kind of

data that suddenly shifts and changes its trends and seasonality

or in other words patterns of Major GC data are highly

volatile, dynamic and uncertain in future hence short-term

forecast (few days) has been proposed to be effective in such

settings over mid-term (weekly) or long-term (monthly or

yearly) forecasts. Data captured over recent 7 days in the past

has been considered as input to forecast algorithm for training.

Due to dynamic nature of the data, uncertainty of future

increases as look ahead forecasting steps increases, hence the

forecast model is configured to forecast for next immediate

few hours up to maximum of 3 days.

A.2 Data Preprocessing

Before passing the data to forecast algorithm for training, it is

crucial to perform certain data pre-processing steps in order to

make the data structured. For preprocessing, key functions

from Pandas python library has been used. For e.g.: Duplicate

entries were removed from the dataset, Data resampling was

performed for changing the frequency of time series data to

30-minute intervals, followed by data aggregation by imputing

max values in 30-minute time intervals and dropping null

entries., Finally, to handle missing entries “Missing Value

Imputation”, backfill interpolation method was performed.

Interpolation technique was used to estimate unknown data

points. In total 336 data points were passed to the forecast

algorithm for training. i.e., 336 = 7 (No: Of days) * 24 (No:

of hours in a day) * 2 (No: of 30-minute intervals in an hour).

The reason for choosing 30-minute frequency is due to the fact

that if the time frequency is increased (Up sampling), then the

total number of data points also increases leading to the

increase in time and space complexity during training process.

A.3 Overview of Build and Evaluation of Forecast Models

Algorithmic functions from statsmodels.tsa module was used

for this exercise. statsmodels [21] is a Python module that

provides classes and functions for the estimation of many

different statistical models, as well as for conducting statistical

tests, and data exploration. And tsa module part of statsmodel

encompasses classes and functions that are required for time

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

54

series analysis. Various functions with statsmodels.tsa were

explored and finally SARIMA algorithm was chosen to

forecast Major GC events over a time-period. Seasonal

Autoregressive Integrated Moving Average, or SARIMA,

method for univariate time series is normally preferred for

forecasting with univariate data containing trends and

seasonality. Univariate is a word generally used in statistics to

label a type of data which consists of observations on one

particular dependent feature, in this case it is Major GC

performance metric. Default hyperparameters were considered

for model training. The reason for choosing default

hyperparameters is explained in forthcoming section. The

performances of the forecast models are evaluated using

Population Deviation % and Hit Ratio (Accuracy %) and are

detailed in the section on “Results discussion”.

B. Importance of Stationarity

Any time series data is composed of three major components

trend, seasonality and residuals (residual part is left over after

separating trend and seasonality from time series data). Any

time series data with non-constant fluctuating patterns or with

trend and seasonality is termed as non-stationary data. Non-

stationary data does not have constant mean and variance over

a period of time. Time series data with Stationary behavior are

easier to analyze and model because their statistical properties

remain constant over time. There will be no trend, seasonality

and cyclicity in the series. In other words, the past and future

observations follow the same statistical properties that has

constant mean and variance. For such stationary time series

data future observations can be easily predicted. Before

forecast models can make predictions, it should be ensured

that the time series data is stationary or at least weakly

stationary. Stationary time series contributes to good accuracy

of prediction as the future statistical properties will not be

different from those observed in the present. The “I” term in

SARIMA algorithm stands for Integrated, meaning presence

of inherent differencing that enables conversion of non-

stationary time series data into stationary series.

C. SARIMA (Seasonal Auto Regressive Integrated Moving

Average) Algorithm

SARIMA is used for non-stationary series, that is, where the

data do not fluctuate around the same mean and variance. In

addition to all properties of ARIMA, the models generated

using this algorithm can also identify trend and seasonality.

The SARIMA algorithm representation with default

hyperparameters is given below.

SARIMAX(data[['NoofMajorGc']], order=(1, 1, 1),

seasonal_order=(1, 1, 1, 48), enforce_stationarity=False,

enforce_invertibility=False) (1)

SARIMAX(data[['NoofMajorGc']], order=(p, q, d),

seasonal_order=(P, Q, D, m), enforce_stationarity=False,

enforce_invertibility=False) (2)

Note: As described under “Importance of Stationarity”, before

model training it is required to process the time series data for

stationarity. In the above equation "enforce stationarity” is

equal to False as the conversion to stationary time-series has

been taken care of by the term “D = 1” & “d = 1”. Detailed

descriptions and explanation of the terms” D” and “d” and

other hyperparameters used in the SARIMA algorithm are

discussed in this section.

 'AR' - in ARIMA stands for Autoregressive - Auto

regressive models comprises of future observations that

are forecasted using linear combination of observations of

the same feature variable i.e., Major GC events from the

past. „AR‟ model‟s parameter is called as lag order,

represented as „p‟. 'p' is the number of datapoints from the

past considered to predict future.

 'MA' - in ARIMA stands for Moving Average – Moving

Average models comprises of future forecasts estimated

using past forecast errors. „MA‟ model‟s parameter called

window size, is represented as „q‟. „q‟ is calculated using

linear combination of errors.

 „I‟ - in ARIMA stands for Integrated - Means

Differencing in-order to make original time series

Stationary. It removes the trend from non-stationary time-

series and later integrates the trend to the original series.

Differencing is represented as 'd'.

In summary, simple ARIMA model has three parameters

(p,d,q). SARIMA carries all properties of an ARIMA and

additionally performs seasonal differencing on the data

considered for training, estimates future seasonality as linear

combination of data points and forecast errors of seasonality

from the past. The hyperparameters of SARIMA are 'p', 'd', 'q'

and 'P', 'D', 'Q', ‟m‟. For simple sample equation of SARIMA

Eq. (1). and Eq. (2). can be referred. i.e., SARIMA equation

used for forecasting is, or

Non-seasonal elements in SARIMA are denoted as follows:

 p: Trend autoregression order

 d: Trend difference order

 q: Trend moving average order

Seasonal elements in SARIMA are denoted as follows:

 m: The number of time steps for a single seasonal period/

periodicity (number of periods in season). For getting the

daily seasonal effect, m=48 is chosen as the data shows

half-hourly frequency (30-minute intervals) and in a day

there are 48 data points with 30-minute intervals.

 P: Seasonal autoregressive order

 D: Seasonal difference order

 Q: Seasonal moving average order

C.1 Reason For Choosing Default Parameters

Considering the dynamic nature of the data, the „AR‟

parameter „p‟ & „P‟ is set to value “1” (default) that considers

only immediate past observations for training the model, in-

order to forecast future steps. Increasing the value of „p‟ and

„P‟ considers far past observations which tend to be outdated

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

55

in most cases. For the same reason, other hyper parameters are

also set to default value of 1.

SARIMA Implementation from Statsmodels:

 The SARIMA implementation from statsmodels.tsa

library is used to fit a SARIMA model.

 It returns an SARIMAResults object. get_forecast()

function [22] from this results object makes predictions

about future time steps and by default it outputs

predictions of next time step after the end of the training

data.

 get_forecast() function enables the Prediction_Results

object to provide useful insights. One of the key attributes

returned by the object is “Predicted_Mean”, the values of

Predicted_Mean are demonstrated in Results section and

it defines the forecasted value of Major GC events.

C.2 SARIMA Algorithm and its mathematical

representation

Considering seasonality into account, SARIMA essentially

applies an ARIMA model to lags that are integer multiples of

seasonality. After modelling seasonality, an ARIMA model is

applied to capture non-seasonal component of the time series

data.

Simple ARIMA Equation looks like, ARIMA (1,1,1), where

p=1, d=1 and q=1 i.e., ARIMA(p,d,q) is represented

mathematically as follow [23]:

(3)

 is the first difference operation. here represents

differenced (first order differencing i.e., d =1) series i.e.,

the series that has already been differenced and made

stationary, =

 Assume

 is the forecast error of last time period t-1

 and are the coefficients

Generic ARIMA (p,d,q) can be written as [25],

 (4)

Writing the above equation using backshift notation as [25],

(5)

 -> AR(p)

 -> d differences

 -> MA (q)

 can be represented using Backshift notation B as

[25],

 (6)

 (7)

 or 1st order differencing can be represented as

 (8)

 2 or 2
nd

 order differencing can be represented as

 (9)

order difference can be represented as

 (10)

Seasonal differencing of order D = 1 following by non-

seasonal difference d =1 can be represented as

 (11)

As stated above in C section, m is the number of time steps for

a single seasonal period/ periodicity.

Finally, the SARIMA model used for

forecasting Major GC event counts is represented as,

 (12)

Further the above equation can be expanded as follows,

representing the forecast

=

 (13)

Where, and represents the non-seasonal AR and MA

coefficients respectively. and represents the Seasonal

AR and MA coefficients respectively.

D. Overview of Novel AIOps Framework

Our novel framework is designed to extract Major GC metric

data for key microservices from Splunk periodically (bihourly)

using a spring boot batch process. The core forecast engine

(Machine Learning Framework) performs all required

preprocessing to convert data extracted from Splunk to a

proper time series data as described in Model Methodology

section. Core forecast engine of this framework produces daily

forecast for configured microservices using models based on

SARIMA algorithm. Periodic training of models is configured

using python-based schedulers. Daily forecast values

generated by the models are continuously stored in inbuilt

python‟s SQLite table along with corresponding thresholds to

facilitate triggering of email alerts to production support teams

when forecast breaches set thresholds. End users of this

functionality can use two different modes to get the view of

Major GC forecasts,

 via Web UI implementation using Python Flask & SQLite

technology stack

 via email alerts reaching end users mailbox.

Implementation of alerts uses Spring Boot Java, JS &

Oracle technology stack

As stated above this framework is designed to alert the end

users when forecast breaches two different types of

thresholds.

 Trend Threshold: This threshold is calculated based on

the following formula using past 7 days of Major GC

events used for training.

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

56

 (14)

 Node Count Threshold: This threshold is based on

total no: of nodes set for a given microservice and is considered

based on the rule that when the total number of Major GC

occurrences across all nodes for a given hour, frequently or

continuously exceeds total number of instances count then it

indicates that the particular microservice is potentially having

some performance issues.

The Fig. 1. illustrates the Novel AIOps framework used for

performing univariate time series forecasting on Major GC

performance metric and identifying performance issues by

checking if the future patterns breach the threshold limits.

Fig. 1. Novel AIOps Framework

Email alerts will be triggered to end users, when the forecasted

value breaches either of these threshold levels. Samples of

forecasts generated by the model and type of threshold

breaches are discussed here. In figures Fig. 2, Fig. 3 and Fig.

4, X- axis indicates time period associated with the past data

and future forecast, Y-axis indicates Number of Major GC

events observed for the corresponding time period in X-axis,

Red line patterns indicate actual number of Major GC events

observed during the recent past 7 days, green line patterns

indicate future forecast generated by the model, Blue dotted

line indicates Trend Threshold, and Red dotted line indicates

Node Count Threshold

 In Fig. 2, forecast does not breach Trend as well as Node

count thresholds. Hence no email alert is triggered.

 In Fig. 3, forecast breaches Node count threshold but not

the Trend threshold. An email alert gets triggered to the

support teams.

 In Fig. 4, forecast breaches both Node count as well as

Trend threshold. An email alert gets triggered to the

support teams indicating both breaches.

Fig. 2. Major GC Forecast for next 3 days – No Breach

Fig. 3. Major GC Forecast for next 3 days – Breach of Node

Count Threshold

Fig. 4. Major GC Forecast for next 3 days – Breach of Node

Count and Trend Threshold

VI. EXPERIMENT AND RESULT

A. Changes Performed to Avoid False Positives

A.1 Max Iterations considered for training using SARIMA

algorithm

The maximum number of training iterations considered for

SARIMA model was 200 instead of the pre-defined (default)

value of 50. Different values of max iterations were tried and

200 showed better model performance. Though the model was

configured to forecast 144 steps (3 days) ahead in future, only

the first 48 steps (1 day) were considered for evaluation of

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

57

model performance because the trend of the data (upward or

downward) kept on changing rapidly every day and it was

considered better to alert the production management team of

any breaches if it occurred during next 24 hours in-order to

avoid any false positives and misses.

A.2 Threshold Changes

As described in earlier sections for detecting forecast breach,

two thresholds were considered, Trend and Node count

threshold.

The Trend thresholds are dynamic and keeps changing with the

changing trend and levels of the data seen in the past 7 days.

The reason for considering this trend threshold is because it

detects the upward trends in past data and provides early

detection of any possible high event counts.

The Node Count thresholds alerts the user when any

microservice experiences number of GC events exceeding the

total number of available nodes in an hour. This threshold is

static and does not change with time.

Our framework is designed to check if forecasted Major GC

events are crossing Trend threshold based on specific numeric

conditions. In order to perform early detection of Major GC

overload and reduce triggering of any false positive mails these

numeric conditions were used for alerting the user immediately

when past patterns start to show signs of abnormally increasing

trend. If the conditions were not met, then even if forecasted

value crosses trend threshold email alerts were not triggered.

These conditional setups were tested with multiple

combinations and finally considered in order to reduce false

email alert triggers.

Condition No: 1 -: Specifically, for Microservices having high

Node Count Threshold, the condition set was, to check if Trend

threshold is greater than or equal to 25% of Node Count

Threshold. If yes, only then email alerts get triggered whenever

forecasted events crosses Trend threshold.

Condition No: 2 -: Similarly, for Microservices having low

Node Count Threshold, the condition set was, to check if Trend

threshold is greater than or equal to 80% of Node Count

Threshold. If yes, only then email alerts get triggered whenever

forecasted events crosses Trend threshold.

B. Test Results

In this paper results of forecast accuracy against multiple

different microservices have been considered for discussion.

Two key metrics have been considered for evaluating the

accuracy of the Forecast models, Percentage of Population

Wrong By More Than 50% (POPWBMT50) and Hit Ratio

(Accuracy %).

B.1 Hit Ratio (Accuracy %) on Forecast Email Alerts

Forecast Email Alerts of various microservices were gathered

and consolidated (Table 1), the number of True positives (TP),

False Positives (FP) alerts were determined by comparing with

occurrences of actual events for the time period that was

forecasted in the past. The accuracy of the models used for

forecasting was then calculated using Hit Ratio. Full form of

abbreviations used in Hit Ratio calculation are given in this

section. The forecast models showed Hit Ratio above 65%.

Hit Ratio = [No of True Positives/ (No of True Positives + No

of False Positives+ Missed)] *100 (15)

True Positive: The breach in forecasted events match actual

event counts at that time interval.

False Positive: The forecasted events breach threshold and mail

gets triggered. But in actual, less event counts are seen at that

time interval.

Misses: When actual event counts are greater than node count

threshold but not identified by model.

Key points to note on False Positives seen in the Table 1:

 False positives in few microservices were due to rare

occurrences of Major GC events spikes in the past, hence

models forecasted spikes in future breaching thresholds

 Microservices had very high spikes of Major GC events in

the past, due to which models got impacted and forecasted

spikes in future breaching thresholds

B.2 Population Deviation Percentage & Hit Ratio based on

Threshold Breaches

Another set of 5 microservices were considered. The forecast

models trained using recent past 7 days of data for those 5

microservices were then evaluated for performance. Forecasts

generated by models for different days of same microservice

were analyzed for consistent performance. Population

Deviation and Hit Ratio calculated for 5 microservices are

tabulated. The results (Table 2) showed above 65% Hit ratio

and 25% of POPWBMT50. Meaning only 25% of the

forecasts made were showing deviation from corresponding

actual value.

Percentage of Population Wrong By More Than 50%

(POPWBMT50): This statistic is also a measure of the

accuracy of the trained forecast model, alternative to the Hit

Ratio metric. It is calculated as the proportion of forecasted

values from among the total number of forecasted values,

which sees a greater than 50% deviation (negative or positive)

from the corresponding actual value.

POPWBMT50 value calculated from Table 2 as follows,

Population Deviation (50%) = [Count of Rows whose

population deviation is greater than 50% / Total row count]

*100 = [4/16] *100 = 25%

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

58

Table 1: Percentage of Achieved Accuracy (Hit Ratio), Forecast Email Alerts – Summary of Number of True Positives,

False Positives and Misses

B.3 Plot Diagnostics

This section covers in-depth analysis of forecast models

generated for key microservices. In addition to validating

Models‟ performance using performance metrics, this paper

also details diagnostics plots of various forecast models

ascertaining models generated after training SARIMA

algorithm with default parameters are “GOOD FIT”. The

diagnostic plot offers 4 different tests. Models are considered

good fit when,

 Standardized Residual plot shows no meaningful patterns.

 Histogram plus KDE estimate curve matches normal

distribution.

 Normal Q-Q plot confirms 90% of the data points are

placed on the straight line.

 Correlogram plot displays 95% of correlations for lag > 0

are not significant.

Diagnostics plots of 4 different microservice along with

forecast and corresponding training data pattern visualization

of generated models are tabulated in Table 2.

For all the samples discussed in this section,

 Training dataset: 1st day 00:00:00' to 7th day 23:30:00'

 Forecast generated on 8th day using past 7 days

 Future Forecast Generated for Next 3 days

C. Comparison with alternative theories and approaches

Different algorithms and various methods of auto

hyperparameter tuning were attempted to improve hit ratio of

the forecast models. As a final solution the model trained

using default hyper parameters showed better results when

compared to models trained using hyperparameters generated

from automated tuning. Alternative methods used for tuning

the hyper parameters of SARIMA Algorithm are discussed in

Section C.1, C.2, C.3, and C.4.

Microservices Date True Positive (TP) False Positive (FP)

Missed

(M)

Hit Ratio

%

Microservice A

D
et

a
il

s
o

f
E

m
a

il
 A

le
rt

s
co

ll
ec

te
d

 o
v

e
r

1
5

d
a

y
s

p
er

io
d

28 0 0 100.00

Microservice B 15 0 0 100.00

Microservice C 14 2 0 87.50

Microservice D 9 2 0 81.82

Microservice E 9 13 0 40.91

Microservice F 1 5 0 16.67

Microservice G 4 11 0 26.67

Microservice H 0 2 0 0.00

Microservice I 0 1 0 0.00

Microservice J 0 3 0 0.00

Total Hit Ratio 80 39 0 67.23

Microservice K

D
et

a
il

s
o

f
E

m
a

il

A
le

rt
s

co
ll

e
ct

ed
 o

v
e
r

2
0

 d
a

y
s

p
er

io
d

39 0 0 100.00

Microservice L 1 0 0 100.00

Microservice M 3 5 0 37.50

Microservice N 5 0 0 100.00

Microservice O 0 3 0 0.00

Microservice P 21 4 0 84.00

Microservice Q 3 0 0 100.00

Total Hit Ratio 72 12 0 85.71

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

59

Table 2. Diagnostics plots of 4 different microservice along with forecast and corresponding training data pattern

visualization of generated models

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

60

C.1 Auto Hyper parameter tuning using Auto ARIMA and

Grid Search

These techniques were used to support auto selection of hyper

parameters to forecast Major GC events for microservices.

Tuning using Auto ARIMA did not work well for most of the

datasets extracted during different time periods. Showed good

results only for very few datasets. This method was considered

to avoid manual intervention in order to fine tune hyper

parameters for forecasting Major GC events. But eventually

turned out with poor accuracy. Grid search method turned out

to be very CPU/Memory intensive exercise and taking much

longer time to run and complete. Hence this approach was also

highly not suitable and recommended for the forecast.

C.2 Deep Learning algorithms (for e.g.: RNN) to forecast

Major GC events for microservices

The Major GC forecast produced by deep learning algorithms

(for e.g.: RNN) were not able to outperform SARIMA based

forecasts because the deep neural networks needed large

datasets to train. In other words, the events collected over past

7 days contained less amount of data entries due to which the

DNN model was not suitable for this use case. Increasing the

overall data entries for training in turn worsened the time and

space complexity of DNN as well as increasing the uncertainty

in future forecasting steps due to dynamic nature of data.

C.3 Training of Vector Autoregressive Moving Average

Regression (VAR/VARMA) algorithm

VAR/ models (vector autoregressive models) [24] are used for

Multivariate Time Series (MTS). VAR algorithms doesn't

work with seasonal data as in SARIMA and are suitable to

generate forecasts that are only based on trend and level of the

past data. Therefore, the results of VAR forecasts showed

absence of seasonality as seen in the Fig. 5 and Fig. 6.

C.4 Training of VAR and SARIMA algorithms using

Multivariate Datasets

The key reason for trying multivariate time series was, it is

believed that there are many factors contributing to

occurrences of Major GC events. A Multivariate time series

has more than one time-dependent variable. Each variable

depends not only on its past values but also has some

dependency on other variables. These dependencies were used

for forecasting future values. PoCs (Proof of Concepts) were

performed on couple of microservices by extracting

multivariate datasets from AppDynamics. The multivariate

datasets consisted of various dependent features like Calls per

Minute, Heap, No. of Major GC, Total Classes Loaded, GC

Time Spent Per Minute, Average Response Time, Minor GC

time spent, No. of Minor GC and Process CPU Burnt

(ms/min).

Both SARIMA and VAR algorithms were tried on

Multivariate datasets. The results in the below graph showed

less robust predictions and forecast. The deviation between

forecasted and actual values were very high. Also, predictions

generated abnormally very high spikes. Thus, the dependent

features that was available and enabled in production

infrastructure of AppDynamics considered for Multi Variate

Analysis of Major GC did not help in forecasting the future

accurately. There might be 100s of attributes of JVM that

might be contributing to Major GC events. Determining these

contributing attributes or metrics are out of scope of this

paper. Also due to Memory & CPU overhead involved, only

very few key metrics are enabled in production infrastructures

of AppDynamics.

Another drawback of this MTS approach is, it requires lot of

processing time. Considering the disadvantages and poor

results from PoCs, this method was not considered.

Fig. 5. Forecast using VAR for Seasonality

Fig. 6. MTS Forecast using VAR

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

61

VII.CONCLUSION

In this paper, we proposed a novel AIOps framework for

Major GC forecasting to achieve the goal of automating the

detection of abnormality in event patterns for future time using

SARIMA based time series forecasting model for critical

microservices hosted on large scale cloud platform such as

PCF. We presented the general motivation behind the

proposed framework to provide intelligent and automated

forecast of Major GC patterns for short future time periods by

fitting the model with immediate past data. Our framework

provides proactive assistance to performance engineering and

production support teams by sending critical alerts whenever

future patterns forecasted breaches the set threshold limits and

enables them to take timely early corrective actions to avoid

system performance issues. Overall, the models developed

using this framework has the ability to accurately provide

early detection of trend abnormality and seasonal fluctuations

for the near future time. In our proposed methodology, we

presented important steps in a sequential flow including Data

Exploration, Data Pre-Processing, Stationarity Conversion,

Time Series Forecasting and Alerting. We performed the

evaluation of the forecasting results of the ML models using

Hit Ratio and Population Deviation metrics. Our evaluation

results showed forecast models that generated good hit ratio

greater than 65% (max reaching up to 85%). Thus, our paper

shows the practicability of forecasting a dynamically varying

Major GC events and early detection of any abnormal

behavior in patterns of the same in future time using statistical

machine learning methods.

VIII. REFERENCE

[1] Dykstra, L., Srisa-an, W., & Chang, J. M. (2002). An

analysis of the garbage collection performance in Sun's

Hotspot/SUP TM/ java virtual machine. In Conference

Proceedings of the IEEE International Performance,

Computing, and Communications Conference. pp. 335–

339. doi: 10.1109/ipccc.2002.995167

[2] Hussein, A., Payer, M., Hosking, A. L., & Vick, C.

(2017). One process to reap them all. In Proceedings of

the 13th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments. pp.

171–186. doi: 10.1145/3050748.3050754

[3] Wilson, P. R. (1992). Uniprocessor garbage collection

techniques. In Memory Management. pp. 1-42. doi:

10.1007/BFb0017182

[4] Phipps, G. (1999). Comparing observed bug and

productivity rates for Java and C++. In Software:

Practice and Experience. pp. 345–358. doi:

10.1002/(SICI)1097-

024X(19990410)29:4%3C345::AID-

SPE238%3E3.0.CO;2-C

[5] Lengauer, P., & Mössenböck, H. (2014). The taming of

the shrew: Increasing performance by automatic

parameter tuning for java garbage collectors. In

Proceedings of the 5th ACM/SPEC International

Conference on Performance Engineering. pp. 111-122.

doi: 10.1145/2568088.2568091

[6] Ehlers, J., & Hasselbring, W. (2011). A Self-adaptive

Monitoring Framework for Component-Based Software

Systems. In Software Architecture. pp. 278–286. doi:

10.1007/978-3-642-23798-0_30

[7] Xian, F., Srisa-an, W., & Jiang, H. (2008). Garbage

collection: Java application servers‟ achilles heel. In

Science of Computer Programming. pp. 89–110. doi:

10.1016/j.scico.2007.07.008

[8] Portillo-Dominguez, A. O. (2016). Performance

optimisation of clustered Java Systems. (Doctoral

Thesis) University College Dublin. School of Computer

Science

https://researchrepository.ucd.ie/handle/10197/8572

[9] Blackburn, S. M., Cheng, P., & McKinley, K. S.

(2004). Myths and realities: the performance impact of

garbage collection. In ACM SIGMETRICS

Performance Evaluation Review. pp. 25–36. doi:

10.1145/1012888.1005693

[10] Portillo-Dominguez, A. O., & Ayala-Rivera, V. (2017).

Improving the Testing of Clustered Systems Through

the Effective Usage of Java Benchmarks. In 2017 5th

International Conference in Software Engineering

Research and Innovation (CONISOFT). pp. 130-139.

doi: 10.1109/CONISOFT.2017.00023

[11] Portillo-Dominguez, A. O. (2018). Towards an efficient

benchmark generation engine for garbage collection. In

Companion of the 2018 ACM/SPEC International

Conference on Performance Engineering. pp. 9-12. doi:

10.1145/3185768.3186303

[12] Portillo-Dominguez, A. O., & Ayala-Rivera, V. (2018).

Improving the testing of Java garbage collection

through an efficient benchmark generation. In 2018 6th

International Conference in Software Engineering

Research and Innovation (CONISOFT). pp. 1-10. doi:

10.1109/CONISOFT.2018.8645889

[13] Belmonte-Carmona, A., Roca-Piera, J., Hernandez-

Capel C., & Alvarez-Bermejo, J. A. (2011). Adaptive

load balancing between static and dynamic layers in

J2EE applications. In 2011 7th International

Conference on Next Generation Web Services

Practices. pp. 61–66. doi:

10.1109/NWeSP.2011.6088154

[14] Portillo-Dominguez, A. O., Wang, M., Magoni, D.,

Perry, P., & Murphy, J. (2014). Load balancing of java

applications by forecasting garbage collections. In 2014

IEEE 13th International Symposium on Parallel and

Distributed Computing. pp. 127–134. doi:

10.1109/ISPDC.2014.20

[15] Portillo-Dominguez, A. O., Wang, M., Murphy, J., &

Magoni, D. (2015). Adaptive GC-aware load balancing

strategy for high-assurance Java Distributed Systems.

In 2015 IEEE 16th International Symposium on High

https://doi.org/10.1109/ipccc.2002.995167
https://doi.org/10.1145/3050748.3050754
https://doi.org/10.1007/BFb0017182
https://doi.org/10.1002/(SICI)1097-024X(19990410)29:4%3C345::AID-SPE238%3E3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-024X(19990410)29:4%3C345::AID-SPE238%3E3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-024X(19990410)29:4%3C345::AID-SPE238%3E3.0.CO;2-C
https://doi.org/10.1145/2568088.2568091
https://doi.org/10.1007/978-3-642-23798-0_30
https://doi.org/10.1016/j.scico.2007.07.008
https://researchrepository.ucd.ie/handle/10197/8572
https://doi.org/10.1145/1012888.1005693
https://doi.org/10.1109/CONISOFT.2017.00023
https://doi.org/10.1145/3185768.3186303
https://doi.org/10.1109/CONISOFT.2018.8645889
https://doi.org/10.1109/NWeSP.2011.6088154
https://www.doi.org/10.1109/ISPDC.2014.20

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 3, ISSN No. 2455-2143, Pages 51-62

 Published Online July 2022 in IJEAST (http://www.ijeast.com)

62

Assurance Systems Engineering. pp. 68–75. doi:

10.1109/HASE.2015.19

[16] Jones, R., Hosking, A., & Moss, E. (2012). The

Garbage Collection Handbook: The Art of Automatic

Memory Management (1st ed.). In Chapman and

Hall/CRC. doi: 10.1201/9781315388021

[17] Isaacs, A., Kanakamedala, S., & Reed, L. (2012).

VMware cloud foundry. In SAGE Business Cases.

SAGE Publications, Ltd. doi: 10.4135/9781526409621

[18] Bernstein, D. (2014). Cloud foundry aims to become

the OpenStack of paas. In IEEE Cloud Computing. pp.

57-60. doi:10.1109/mcc.2014.32

[19] Lazzeri, F. (2020). Overview of time series forecasting,

In Machine Learning for Time Series Forecasting with

Python®. pp. 1–27. doi: 10.1002/9781119682394

[20] Mills, T. C. (2019). Arima models for nonstationary

time series. In Applied Time Series Analysis. pp. 57–

69. doi: 10.1016/b978-0-12-813117-6.00004-1

[21] Seabold, S., & Perktold, J. (2010). Statsmodels:

Econometric and statistical modeling with python. In

Proceedings of the Python in Science Conference. doi:

10.25080/majora-92bf1922-011

[22] McKinney, W., Perktold, J., & Seabold, S. (2011).

Time series analysis in python with statsmodels In

Proceedings of the Python in Science Conference. doi:

10.25080/majora-ebaa42b7-012

[23] Abraham, B., & Ledolter, J. (1983). Seasonal

autoregressive integrated moving average models. In

Statistical Methods for Forecasting. pp. 281–321. doi:

10.1002/9780470316610.ch6

[24] Kilian, L., & Lütkepohl, H. (2017). Vector

Autoregressive Models. In Structural Vector

Autoregressive Analysis (Themes in Modern

Econometrics, pp. 19-74). Cambridge: Cambridge

University Press. doi:10.1017/9781108164818.003

[25] Hyndman, R.J., & Athanasopoulos, G. (2018).

Forecasting: principles and practice (2nd ed.). OTexts:

Melbourne, Australia. OTexts.com/fpp2

https://doi.org/10.1109/HASE.2015.19
https://doi.org/10.1201/9781315388021
https://doi.org/10.4135/9781526409621
https://doi.org/10.1109/mcc.2014.32
https://doi.org/10.1002/9781119682394
https://doi.org/10.1016/B978-0-12-813117-6.00004-1
https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.25080/majora-ebaa42b7-012
https://doi.org/10.1002/9780470316610.ch6
https://doi.org/10.1017/9781108164818.003
https://otexts.com/fpp2/

