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Abstract— For large scale applications based on 

Microservices architecture and hosted on scalable 

platforms like Pivotal Cloud Foundry or OpenShift, it is 

imperative to monitor the performance of microservices on 

a continuous basis and trigger performance critical alerts 

upfront when abnormal patterns are observed in the 

immediate past. One of the critical application 

performance indicators is Major Garbage Collection 

(Major GC), an increase of which causes application 

performance bottlenecks and might indicate insufficient 

memory allocation to the JVM or a potential memory leak. 

In this paper, we discuss a solution built using machine 

learning Algorithms that forecasts Major GC cycles 

(Number of Major Garbage Collection) of business critical 

microservices for the near future time periods. This paper 

discusses various algorithms within python’s stats models. 

tsa package that were explored and details the concepts 

and results of forecast models trained using Seasonal 

Autoregressive Integrated Moving Average, or SARIMA 

algorithm that was finally considered for forecasting based 

on model performance. The paper also elucidates the 

Forecast accuracy of the model, showing results of the 

forecast vs actual occurrences of Major Garbage 

collection. The objective of this solution based on AIOps 

framework is to enable development and production 

support teams get proactive notification when forecast 

Major GC patterns breach the set threshold limits, so that 

corrective action can be taken to improve the application 

performance by reducing frequency of Major GC cycles. 

 

Keywords— Machine Learning, Time series Forecasting, 

Major Garbage Collection, Microservices, SARIMA, Java 

Virtual Machine (JVM), Key Performance Metrics. 

 

I. INTRODUCTION 

Although Major Garbage Collection (Major GC) is a core 

feature of Java and Android-based systems used for automatic 

memory management tasks, it also comes with a performance 

cost [1, 2, 3, 4]. The length and frequency of the long delays 

(e.g., in seconds or minutes) imposed by Major GC overhead 

can potentially impact the performance of distributed systems 

that require fast response time and high throughput [5,6,7]. 

For better system performance, it is necessary to have very 

few Major GC events with short delays (e.g., in milliseconds) 

[8]. The possible reason that triggers excessive Major GCs is 

either potential memory leak in the application or insufficient 

memory allocation to the Java Virtual Machine (JVM) [9]. For 

preventing occurrences of Major GC overhead, we proposed a 

novel AIOps framework which focuses on monitoring 

anomalous Major GC scenarios in real time using an efficient 

forecasting algorithm to avoid performance related issues. We 

considered Major GC forecasting for business critical 

microservices to identify whether the forecast exceeds the 

threshold limits for early detection of performance overhead. 

 

The motivation behind the proposed research is to provide 

automation in performance monitoring operations, early 

detection, and prevention of performance issues at the 

enterprise level for large scale distributed systems using AI 

and assist performance testers to promptly make decisions by 

using the integrated AIOps framework for real-time 

visualization of Major GC anomalies in microservice. 

Particularly, the framework performs faster and accurate real-

time detection of possible Major GC spikes in future time-

period. Thus, mitigating the risks involved due to performance 

degradation that eventually leads to decrease volume of 

customers, financial losses, and reputational damage. 

 

II. RELATED WORK 

Major GC is a fundamental performance metric used for 

automatic memory management operations in large-scale 

applications based on the Spring Boot Java framework. 

However, frequent Major GCs in any microservices indicate 

potential memory leaks or inadequate memory allocation to 

the JVM which deteriorates the overall application 

performance by interrupting the connected programs. Previous 
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studies have aimed at developing engines to automatically 

produce benchmarks for capturing the intricacies in Major GC 

behaviour of java-based systems [10,11,12]. The major 

challenge experienced by the researchers is to have an ideal 

load balancing strategy or Java benchmark while testing Major 

GC related scenarios due to the non-deterministic nature of 

Major GC which tends to influence the configuration 

complexity of the application [13, 14, 15, 16]. In-order to 

enhance the system performance in respect of throughput or 

response time, there is a need to prevent the impact of Major 

GC overhead. Therefore, it is highly essential to forecast 

Major GC patterns for detecting the non-deterministic 

scenarios and evaluate the performance impacts for tackling 

performance issues in advance. To help address this challenge, 

our research outlines a novel AIOps framework where 

complex and time-varying Major GC performance anomalies 

are detected in future time using a Statistical Machine 

Learning Model based on captured real time data. The model 

accurately predicts the future occurrences of potential Major 

GC overload, which can cause a long pause time on the 

underlying application. Overall, the framework provides 

performance engineers with insights into the upcoming 

situations and enables them to take timely corrective actions to 

avoid performance overload instances in advance to achieve 

better system performance. 

 

III. BACKGROUND 

A. Garbage Collectors 

Garbage Collector provides an automatic management of 

memory by a program. Garbage collection is a method of 

reclaiming the space used by unreachable objects [16], it 

solves many problems such as dangling reference problem, 

space leak problem etc. that programmer use to face 

previously due to explicit memory management via code. But 

does not solve many performance issues associated with heap 

and drawbacks associated with GC algorithms. GC itself is a 

complex task taking time and resources of its own. One of the 

most widely used GC collection technique is Generational 

Collection. When using this technique, the heap memory is 

divided into generations. The configuration of most frequently 

used generation technique has two generations, one for young 

objects and other for old objects. Young generation collections 

also termed as Minor GC collection [1]. Objects that survive 

young generation collection are eventually promoted to old 

generation. This old generation space is typically larger than 

young generation and the object allocations in this space 

happens more slowly. As a result, old generation collections 

also termed as Major GC collections are infrequent and takes 

significantly longer time to complete. There are 4 types of 

generational garbage collections, Serial, Parallel (one more 

subtype called Parallel Compacting), CMS (Concurrent Mark-

Sweep Collector) and G1(Garbage-First Collector). CMS 

exhibits better performance when compared to other collector 

types. It is specially designed for applications that requires 

shorter GC pauses and allows parallel GC collection along 

with application threads. Regardless of the GC collection 

types (viz. algorithms), stop-the-world is inevitable for any 

type of collector at some point of time during the garbage 

collection process. During stop-the-world, the execution of all 

the application threads is halted when collection takes place. 

Though CMS tries to reduce the pause time due to Major 

collections, it pauses all the application threads for a brief 

period at the beginning of the collection and again towards the 

middle of the collection [16]. Steps of typical Concurrent 

Mark and Sweep collection cycle are discussed in [16]. Some 

of the common failures associated with CMS, i.e., Concurrent 

Mode Failure, Floating Garbage and Pauses twice during 

collection process are detailed in [16]. 

 

B. Infrastructure landscape and Volumes handled 

This section provides an overview of the production 

infrastructure owned by a leading global multinational 

consumer bank and financial services company. The 

production infrastructure hosts over thousands of 

containerized microservices on private “application” PaaS, 

Pivotal Cloud Foundry (PCF) [17] [18]. Containerized 

microservices deployed in PCF supports various business 

critical functionalities such as Gateway operations, 

Authentication, Account information, Payment and other 

services. The Gateway services, also called PCF platform 

services, form the first layer of containerized microservices 

receives over 0.3 million requests every minute on normal 

days and more than 0.5 million requests every minute on peak 

days. Most of front and backend microservices receives high 

volumes every minute and has strict SLA requirements to 

ensure very fast response times and high throughput. 

Depending on the Non-Functional requirements (NFRs), each 

microservice is allocated multiple virtual instances (viz nodes) 

to process incoming and outgoing traffic. The size of each 

node or instance is determined based on the breakpoint test 

results executed by performance certification teams. The 

break-point tests are performed to identify the maximum load 

bearing capacity of single node for set of functionalities 

supported by a particular microservice. Total number of nodes 

to be configured for a given microservices is set based on the 

total throughput requirements given by business as part of 

NFRs and capacity of the single node as determined during 

breakpoint tests. 

IV. PROBLEM STATEMENT 

Major GC collections may impact application performance and 

throughput significantly. As the JVM heap sizes grow, the 

impact due to Major GC collections increases as the 

application must have to pause for a longer duration to allow 

JVM to perform GC.  High frequency of Major GC can 

deteriorate application throughput, cause user-session time-

outs, force nodes of microservices to fail, or cause intense 

losses to business. Selection of garbage collector types or using 

incorrect settings can greatly increase pause times or even 

cause out-of-memory crashes. On analyzing the patterns of key 

performance indicators for any kind of application or 
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microservice, in majority of the cases, patterns leading to 

problematic performance can be figured out as it either shows 

repeating high spikes with abnormal trends or increasing trends 

over certain periods of time or periodic spikes crossing set 

thresholds. The objective of this work is to forecast the number 

of Major Garbage collections for a specific time period in 

future and use this information in the decision-making process 

to proactively enable planning for restarts of nodes, or adding 

more nodes to a particular microservice‟s tier or enable teams 

to switch on additional loggings to capture dumps of garbage 

collection statistics, heap, thread, and deadlock data in 

production just before the forecasted time period so the 

engineering teams can permanently fix the root cause. The 

objective is to keep number of GCs with long pauses to 

minimum to enable improvement in the performance of 

microservices. 

 

V. TIME SERIES FORECASTING 

This paper focusses on Timeseries forecasting, a quantitative 

forecasting method which is performed based on the data and 

any repetition in its past patterns. Time series forecasting is an 

important area of machine learning [19]. It is important 

because there are so many prediction problems that involve a 

time component. This method helps in capturing any complex 

patterns which human cannot identify. Some of the 

fundamental terms related to working with time-series data are 

Time Series Data, Time Series Analysis and Time Series 

Forecasting. 

 Time Series Data: Any data that has time component 

involved is termed as a time-series data. 

 Time Series Analysis: Studying on a time-series data to 

find useful perceptions and patterns is termed as time-

series analysis [20]. 

 Time Series Forecasting: Time series forecasting is 

essentially focusing at the historical data to make 

estimates into future 

As described in earlier sections making this time-series 

forecast can be beneficial to the Performance Engineering 

and Production support team as it would help them take 

some crucial decisions as follow: 

 When nodes / application server instances can be 

restarted? 

 When more nodes can be added to a particular 

microservice that was seen with frequent or high Major 

Garbage collections in future (forecast time) and in the 

past? 

 Which particular Microservices out of many can be 

considered for in-depth investigations in-order to identify 

the root causes that are driving high Major GC 

occurrences? 

Basic steps of Time Series Forecasting involve, 

1. Problem Definition (discussed in earlier sections) 

2. Data Collection & Analysis  

3. Data Preprocessing  

4. Build and Evaluation of Forecast Models 

 

A. Model Methodology Overview 

A brief overview of different steps of time series forecasting 

has been discussed as follows:  

 

A.1 Data Collection & Analysis 

For key microservices in production, Major GC events data 

(or any performance metric) captured by AppDynamics are 

collected periodically in a Telemetry Data Lake, and the data 

is stored at granularity of 1 minute interval using Splunk 

indexes for long term data monitoring and analysis. The Major 

GC events stored in Telemetry are downloaded periodically to 

the application specific data store via Offline batch jobs and 

are further aggregated (using max value) to one event per 30-

minute interval using python functions. Major GCs is a kind of 

data that suddenly shifts and changes its trends and seasonality 

or in other words patterns of Major GC data are highly 

volatile, dynamic and uncertain in future hence short-term 

forecast (few days) has been proposed to be effective in such 

settings over mid-term (weekly) or long-term (monthly or 

yearly) forecasts. Data captured over recent 7 days in the past 

has been considered as input to forecast algorithm for training. 

Due to dynamic nature of the data, uncertainty of future 

increases as look ahead forecasting steps increases, hence the 

forecast model is configured to forecast for next immediate 

few hours up to maximum of 3 days. 

 

A.2 Data Preprocessing 

Before passing the data to forecast algorithm for training, it is 

crucial to perform certain data pre-processing steps in order to 

make the data structured. For preprocessing, key functions 

from Pandas python library has been used. For e.g.: Duplicate 

entries were removed from the dataset, Data resampling was 

performed for changing the frequency of time series data to 

30-minute intervals, followed by data aggregation by imputing 

max values in 30-minute time intervals and dropping null 

entries., Finally, to handle missing entries “Missing Value 

Imputation”, backfill interpolation method was performed. 

Interpolation technique was used to estimate unknown data 

points. In total 336 data points were passed to the forecast 

algorithm for training. i.e., 336   = 7 (No: Of days) * 24 (No: 

of hours in a day) * 2 (No: of 30-minute intervals in an hour). 

The reason for choosing 30-minute frequency is due to the fact 

that if the time frequency is increased (Up sampling), then the 

total number of data points also increases leading to the 

increase in time and space complexity during training process. 

 

A.3 Overview of Build and Evaluation of Forecast Models 

Algorithmic functions from statsmodels.tsa module was used 

for this exercise. statsmodels [21] is a Python module that 

provides classes and functions for the estimation of many 

different statistical models, as well as for conducting statistical 

tests, and data exploration. And tsa module part of statsmodel 

encompasses classes and functions that are required for time 
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series analysis. Various functions with statsmodels.tsa were 

explored and finally SARIMA algorithm was chosen to 

forecast Major GC events over a time-period. Seasonal 

Autoregressive Integrated Moving Average, or SARIMA, 

method for univariate time series is normally preferred for 

forecasting with univariate data containing trends and 

seasonality. Univariate is a word generally used in statistics to 

label a type of data which consists of observations on one 

particular dependent feature, in this case it is Major GC 

performance metric. Default hyperparameters were considered 

for model training. The reason for choosing default 

hyperparameters is explained in forthcoming section. The 

performances of the forecast models are evaluated using 

Population Deviation % and Hit Ratio (Accuracy %) and are 

detailed in the section on “Results discussion”. 

 

B. Importance of Stationarity 

Any time series data is composed of three major components 

trend, seasonality and residuals (residual part is left over after 

separating trend and seasonality from time series data). Any 

time series data with non-constant fluctuating patterns or with 

trend and seasonality is termed as non-stationary data. Non-

stationary data does not have constant mean and variance over 

a period of time. Time series data with Stationary behavior are 

easier to analyze and model because their statistical properties 

remain constant over time. There will be no trend, seasonality 

and cyclicity in the series. In other words, the past and future 

observations follow the same statistical properties that has 

constant mean and variance. For such stationary time series 

data future observations can be easily predicted. Before 

forecast models can make predictions, it should be ensured 

that the time series data is stationary or at least weakly 

stationary. Stationary time series contributes to good accuracy 

of prediction as the future statistical properties will not be 

different from those observed in the present. The “I” term in 

SARIMA algorithm stands for Integrated, meaning presence 

of inherent differencing that enables conversion of non-

stationary time series data into stationary series. 

 

C. SARIMA (Seasonal Auto Regressive Integrated Moving 

Average) Algorithm 

SARIMA is used for non-stationary series, that is, where the 

data do not fluctuate around the same mean and variance. In 

addition to all properties of ARIMA, the models generated 

using this algorithm can also identify trend and seasonality. 

The SARIMA algorithm representation with default 

hyperparameters is given below. 

SARIMAX(data[['NoofMajorGc']], order=(1, 1, 1),  

seasonal_order=(1, 1, 1, 48), enforce_stationarity=False,  

enforce_invertibility=False)                                                   (1) 

SARIMAX(data[['NoofMajorGc']], order=(p, q, d), 

seasonal_order=(P, Q, D, m), enforce_stationarity=False,  

enforce_invertibility=False)                                                   (2) 

Note:  As described under “Importance of Stationarity”, before 

model training it is required to process the time series data for 

stationarity. In the above equation "enforce stationarity” is 

equal to False as the conversion to stationary time-series has 

been taken care of by the term “D = 1” & “d = 1”. Detailed 

descriptions and explanation of the terms” D” and “d” and 

other hyperparameters used in the SARIMA algorithm are 

discussed in this section. 

 'AR' - in ARIMA stands for Autoregressive - Auto 

regressive models comprises of future observations that 

are forecasted using linear combination of observations of 

the same feature variable i.e., Major GC events from the 

past. „AR‟ model‟s parameter is called as lag order, 

represented as „p‟. 'p' is the number of datapoints from the 

past considered to predict future. 

 'MA' - in ARIMA stands for Moving Average – Moving 

Average models comprises of future forecasts estimated 

using past forecast errors. „MA‟ model‟s parameter called 

window size, is represented as „q‟. „q‟ is calculated using 

linear combination of errors. 

 „I‟ - in ARIMA stands for Integrated - Means 

Differencing in-order to make original time series 

Stationary. It removes the trend from non-stationary time-

series and later integrates the trend to the original series. 

Differencing is represented as 'd'. 

In summary, simple ARIMA model has three parameters 

(p,d,q). SARIMA carries all properties of an ARIMA and 

additionally performs seasonal differencing on the data 

considered for training, estimates future seasonality as linear 

combination of data points and forecast errors of seasonality 

from the past. The hyperparameters of SARIMA are 'p', 'd', 'q' 

and 'P', 'D', 'Q', ‟m‟. For simple sample equation of SARIMA 

Eq. (1). and Eq. (2). can be referred. i.e., SARIMA equation 

used for forecasting is,   or 

 

Non-seasonal elements in SARIMA are denoted as follows: 

 p: Trend autoregression order 

 d: Trend difference order 

 q: Trend moving average order 

Seasonal elements in SARIMA are denoted as follows: 

 m: The number of time steps for a single seasonal period/ 

periodicity (number of periods in season). For getting the 

daily seasonal effect, m=48 is chosen as the data shows 

half-hourly frequency (30-minute intervals) and in a day 

there are 48 data points with 30-minute intervals.  

 P: Seasonal autoregressive order 

 D: Seasonal difference order 

 Q: Seasonal moving average order 

 

C.1 Reason For Choosing Default Parameters 

Considering the dynamic nature of the data, the „AR‟ 

parameter „p‟ & „P‟ is set to value “1” (default) that considers 

only immediate past observations for training the model, in-

order to forecast future steps. Increasing the value of „p‟ and 

„P‟ considers far past observations which tend to be outdated 
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in most cases. For the same reason, other hyper parameters are 

also set to default value of 1. 

SARIMA Implementation from Statsmodels: 

 The SARIMA implementation from statsmodels.tsa 

library is used to fit a SARIMA model. 

 It returns an SARIMAResults object. get_forecast() 

function [22] from this results object makes predictions 

about future time steps and by default it outputs 

predictions of next time step after the end of the training 

data. 

 get_forecast() function enables the Prediction_Results 

object to provide useful insights. One of the key attributes 

returned by the object is “Predicted_Mean”, the values of  

Predicted_Mean are demonstrated in Results section and 

it defines the forecasted value of Major GC events. 

 

C.2 SARIMA Algorithm and its mathematical 

representation 

Considering seasonality into account, SARIMA essentially 

applies an ARIMA model to lags that are integer multiples of 

seasonality. After modelling seasonality, an ARIMA model is 

applied to capture non-seasonal component of the time series 

data. 

Simple ARIMA Equation looks like, ARIMA (1,1,1), where 

p=1, d=1 and q=1 i.e., ARIMA(p,d,q) is represented 

mathematically as follow [23]: 

                                                   

(3) 

  is the first difference operation.  here represents 

differenced (first order differencing i.e., d =1) series i.e., 

the series that has already been differenced and made 

stationary,  =  

 Assume  

  is the forecast error of last time period t-1 

 and are the coefficients 

  

Generic ARIMA (p,d,q) can be written as [25], 

 

                                                                                        (4) 

Writing the above equation using backshift notation as [25], 

 

                                                
(5) 

  -> AR(p) 

  -> d differences 

  -> MA (q) 

 can be represented using Backshift notation B as 

[25], 

                                                                              (6) 

                                                         (7) 

 or 1st order differencing can be represented as 

                         (8) 

 2 or 2
nd

 order differencing can be represented as 

 

       (9) 

order difference can be represented as  

                                                                           (10) 

Seasonal differencing of order D = 1 following by non-

seasonal difference d =1 can be represented as 

                                                             (11) 

As stated above in C section, m is the number of time steps for 

a single seasonal period/ periodicity.  

 

Finally, the SARIMA model used for 

forecasting Major GC event counts is represented as, 

 

                                               (12) 

Further the above equation can be expanded as follows, 

representing the forecast  

=   

                                      (13) 

Where,  and  represents the non-seasonal AR and MA 

coefficients respectively. and  represents the Seasonal 

AR and MA coefficients respectively. 

 

D. Overview of Novel AIOps Framework 

Our novel framework is designed to extract Major GC metric 

data for key microservices from Splunk periodically (bihourly) 

using a spring boot batch process. The core forecast engine 

(Machine Learning Framework) performs all required 

preprocessing to convert data extracted from Splunk to a 

proper time series data as described in Model Methodology 

section. Core forecast engine of this framework produces daily 

forecast for configured microservices using models based on 

SARIMA algorithm. Periodic training of models is configured 

using python-based schedulers. Daily forecast values 

generated by the models are continuously stored in inbuilt 

python‟s SQLite table along with corresponding thresholds to 

facilitate triggering of email alerts to production support teams 

when forecast breaches set thresholds. End users of this 

functionality can use two different modes to get the view of 

Major GC forecasts,  

 via Web UI implementation using Python Flask & SQLite 

technology stack  

 via email alerts reaching end users mailbox. 

Implementation of alerts uses Spring Boot Java, JS & 

Oracle technology stack 

As stated above this framework is designed to alert the end 

users when forecast breaches two different types of 

thresholds. 

 Trend Threshold: This threshold is calculated based on 

the following formula using past 7 days of Major GC 

events used for training. 
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                       (14) 

 

 Node Count Threshold: This threshold is based on 

total no: of nodes set for a given microservice and is considered 

based on the rule that when the total number of Major GC 

occurrences across all nodes for a given hour, frequently or 

continuously exceeds total number of instances count then it 

indicates that the particular microservice is potentially having 

some performance issues. 

The Fig. 1. illustrates the Novel AIOps framework used for 

performing univariate time series forecasting on Major GC 

performance metric and identifying performance issues by 

checking if the future patterns breach the threshold limits. 

 
Fig. 1. Novel AIOps Framework 

 

Email alerts will be triggered to end users, when the forecasted 

value breaches either of these threshold levels. Samples of 

forecasts generated by the model and type of threshold 

breaches are discussed here.  In figures Fig. 2, Fig. 3 and Fig. 

4, X- axis indicates time period associated with the past data 

and future forecast, Y-axis indicates Number of Major GC 

events observed for the corresponding time period in X-axis, 

Red line patterns indicate actual number of Major GC events 

observed during the recent past 7 days, green line patterns 

indicate future forecast generated by the model, Blue dotted 

line indicates Trend Threshold, and Red dotted line indicates 

Node Count Threshold 

 In Fig. 2, forecast does not breach Trend as well as Node 

count thresholds. Hence no email alert is triggered. 

 In Fig. 3, forecast breaches Node count threshold but not 

the Trend threshold. An email alert gets triggered to the 

support teams. 

 In Fig. 4, forecast breaches both Node count as well as 

Trend threshold. An email alert gets triggered to the 

support teams indicating both breaches. 

 
Fig. 2. Major GC Forecast for next 3 days – No Breach 

 
Fig. 3. Major GC Forecast for next 3 days – Breach of Node 

Count Threshold 

 
Fig. 4. Major GC Forecast for next 3 days – Breach of Node 

Count and Trend Threshold 

 

VI. EXPERIMENT AND RESULT 

A. Changes Performed to Avoid False Positives 

A.1 Max Iterations considered for training using SARIMA 

algorithm 

The maximum number of training iterations considered for 

SARIMA model was 200 instead of the pre-defined (default) 

value of 50. Different values of max iterations were tried and 

200 showed better model performance. Though the model was 

configured to forecast 144 steps (3 days) ahead in future, only 

the first 48 steps (1 day) were considered for evaluation of 
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model performance because the trend of the data (upward or 

downward) kept on changing rapidly every day and it was 

considered better to alert the production management team of 

any breaches if it occurred during next 24 hours in-order to 

avoid any false positives and misses. 

 

A.2 Threshold Changes 

As described in earlier sections for detecting forecast breach, 

two thresholds were considered, Trend and Node count 

threshold. 

The Trend thresholds are dynamic and keeps changing with the 

changing trend and levels of the data seen in the past 7 days. 

The reason for considering this trend threshold is because it 

detects the upward trends in past data and provides early 

detection of any possible high event counts. 

The Node Count thresholds alerts the user when any 

microservice experiences number of GC events exceeding the 

total number of available nodes in an hour. This threshold is 

static and does not change with time. 

Our framework is designed to check if forecasted Major GC 

events are crossing Trend threshold based on specific numeric 

conditions. In order to perform early detection of Major GC 

overload and reduce triggering of any false positive mails these 

numeric conditions were used for alerting the user immediately 

when past patterns start to show signs of abnormally increasing 

trend.  If the conditions were not met, then even if forecasted 

value crosses trend threshold email alerts were not triggered. 

These conditional setups were tested with multiple 

combinations and finally considered in order to reduce false 

email alert triggers. 

Condition No: 1 -: Specifically, for Microservices having high 

Node Count Threshold, the condition set was, to check if Trend 

threshold is greater than or equal to 25% of Node Count 

Threshold. If yes, only then email alerts get triggered whenever 

forecasted events crosses Trend threshold. 

Condition No: 2 -: Similarly, for Microservices having low 

Node Count Threshold, the condition set was, to check if Trend 

threshold is greater than or equal to 80% of Node Count 

Threshold. If yes, only then email alerts get triggered whenever 

forecasted events crosses Trend threshold. 

 

B. Test Results 

In this paper results of forecast accuracy against multiple 

different microservices have been considered for discussion. 

Two key metrics have been considered for evaluating the 

accuracy of the Forecast models, Percentage of Population 

Wrong By More Than 50% (POPWBMT50) and Hit Ratio 

(Accuracy %). 

 

 

B.1 Hit Ratio (Accuracy %) on Forecast Email Alerts 

Forecast Email Alerts of various microservices were gathered 

and consolidated (Table 1), the number of True positives (TP), 

False Positives (FP) alerts were determined by comparing with 

occurrences of actual events for the time period that was 

forecasted in the past. The accuracy of the models used for 

forecasting was then calculated using Hit Ratio. Full form of 

abbreviations used in Hit Ratio calculation are given in this 

section. The forecast models showed Hit Ratio above 65%. 

Hit Ratio = [No of True Positives/ (No of True Positives + No 

of False Positives+ Missed)] *100                                        (15) 

True Positive: The breach in forecasted events match actual 

event counts at that time interval. 

False Positive: The forecasted events breach threshold and mail 

gets triggered. But in actual, less event counts are seen at that 

time interval. 

Misses: When actual event counts are greater than node count 

threshold but not identified by model. 

Key points to note on False Positives seen in the Table 1:  

 False positives in few microservices were due to rare 

occurrences of Major GC events spikes in the past, hence 

models forecasted spikes in future breaching thresholds 

 Microservices had very high spikes of Major GC events in 

the past, due to which models got impacted and forecasted 

spikes in future breaching thresholds 

 

B.2 Population Deviation Percentage & Hit Ratio based on 

Threshold Breaches 

Another set of 5 microservices were considered. The forecast 

models trained using recent past 7 days of data for those 5 

microservices were then evaluated for performance. Forecasts 

generated by models for different days of same microservice 

were analyzed for consistent performance. Population 

Deviation and Hit Ratio calculated for 5 microservices are 

tabulated. The results (Table 2) showed above 65% Hit ratio 

and 25% of POPWBMT50. Meaning only 25% of the 

forecasts made were showing deviation from corresponding 

actual value.  

Percentage of Population Wrong By More Than 50% 

(POPWBMT50): This statistic is also a measure of the 

accuracy of the trained forecast model, alternative to the Hit 

Ratio metric. It is calculated as the proportion of forecasted 

values from among the total number of forecasted values, 

which sees a greater than 50% deviation (negative or positive) 

from the corresponding actual value. 

 

POPWBMT50 value calculated from Table 2 as follows,  

Population Deviation (50%) = [Count of Rows whose 

population deviation is greater than 50% / Total row count] 

*100 = [4/16] *100 = 25% 
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Table 1: Percentage of Achieved Accuracy (Hit Ratio), Forecast Email Alerts – Summary of Number of True Positives, 

False Positives and Misses 

 

B.3 Plot Diagnostics 

This section covers in-depth analysis of forecast models 

generated for key microservices. In addition to validating 

Models‟ performance using performance metrics, this paper 

also details diagnostics plots of various forecast models 

ascertaining models generated after training SARIMA 

algorithm with default parameters are “GOOD FIT”. The 

diagnostic plot offers 4 different tests. Models are considered 

good fit when,  

 Standardized Residual plot shows no meaningful patterns. 

 Histogram plus KDE estimate curve matches normal 

distribution. 

 Normal Q-Q plot confirms 90% of the data points are 

placed on the straight line. 

 Correlogram plot displays 95% of correlations for lag > 0 

are not significant. 

 

Diagnostics plots of 4 different microservice along with 

forecast and corresponding training data pattern visualization 

of generated models are tabulated in Table 2. 

For all the samples discussed in this section,  

 Training dataset: 1st day 00:00:00' to 7th day 23:30:00' 

 Forecast generated on 8th day using past 7 days 

 Future Forecast Generated for Next 3 days 

 

C. Comparison with alternative theories and approaches 

Different algorithms and various methods of auto 

hyperparameter tuning were attempted to improve hit ratio of 

the forecast models. As a final solution the model trained 

using default hyper parameters showed better results when 

compared to models trained using hyperparameters generated 

from automated tuning. Alternative methods used for tuning 

the hyper parameters of SARIMA Algorithm are discussed in 

Section C.1, C.2, C.3, and C.4. 

 

 

 

 

 

 

Microservices Date True Positive (TP) False Positive (FP) 

Missed 

(M) 

Hit Ratio 

% 

Microservice A 

D
et
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s 
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f 
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m
a
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s 
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te
d
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v

e
r 

1
5

 

d
a

y
s 

p
er
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28 0 0 100.00 

Microservice B 15 0 0 100.00 

Microservice C 14 2 0 87.50 

Microservice D 9 2 0 81.82 

Microservice E 9 13 0 40.91 

Microservice F 1 5 0 16.67 

Microservice G 4 11 0 26.67 

Microservice H 0 2 0 0.00 

Microservice I 0 1 0 0.00 

Microservice J 0 3 0 0.00 

Total Hit Ratio 80 39 0 67.23 

Microservice K 

D
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il

s 
o

f 
E

m
a
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A
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rt
s 
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e
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v
e
r 

2
0

 d
a

y
s 

p
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39 0 0 100.00 

Microservice L 1 0 0 100.00 

Microservice M 3 5 0 37.50 

Microservice N 5 0 0 100.00 

Microservice O 0 3 0 0.00 

Microservice P 21 4 0 84.00 

Microservice Q 3 0 0 100.00 

Total Hit Ratio 72 12 0 85.71 
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Table 2. Diagnostics plots of 4 different microservice along with forecast and corresponding training data pattern 

visualization of generated models 
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C.1 Auto Hyper parameter tuning using Auto ARIMA and 

Grid Search 

These techniques were used to support auto selection of hyper 

parameters to forecast Major GC events for microservices. 

Tuning using Auto ARIMA did not work well for most of the 

datasets extracted during different time periods. Showed good 

results only for very few datasets. This method was considered 

to avoid manual intervention in order to fine tune hyper 

parameters for forecasting Major GC events. But eventually 

turned out with poor accuracy. Grid search method turned out 

to be very CPU/Memory intensive exercise and taking much 

longer time to run and complete. Hence this approach was also 

highly not suitable and recommended for the forecast. 

 

C.2 Deep Learning algorithms (for e.g.: RNN) to forecast 

Major GC events for microservices 

The Major GC forecast produced by deep learning algorithms 

(for e.g.: RNN) were not able to outperform SARIMA based 

forecasts because the deep neural networks needed large 

datasets to train. In other words, the events collected over past 

7 days contained less amount of data entries due to which the 

DNN model was not suitable for this use case. Increasing the 

overall data entries for training in turn worsened the time and 

space complexity of DNN as well as increasing the uncertainty 

in future forecasting steps due to dynamic nature of data. 

 

C.3 Training of Vector Autoregressive Moving Average 

Regression (VAR/VARMA) algorithm 

VAR/ models (vector autoregressive models) [24] are used for 

Multivariate Time Series (MTS). VAR algorithms doesn't 

work with seasonal data as in SARIMA and are suitable to 

generate forecasts that are only based on trend and level of the 

past data. Therefore, the results of VAR forecasts showed 

absence of seasonality as seen in the Fig. 5 and Fig. 6. 

 

C.4 Training of VAR and SARIMA algorithms using 

Multivariate Datasets 

The key reason for trying multivariate time series was, it is 

believed that there are many factors contributing to 

occurrences of Major GC events. A Multivariate time series 

has more than one time-dependent variable. Each variable 

depends not only on its past values but also has some 

dependency on other variables. These dependencies were used 

for forecasting future values. PoCs (Proof of Concepts) were 

performed on couple of microservices by extracting 

multivariate datasets from AppDynamics. The multivariate 

datasets consisted of various dependent features like Calls per 

Minute, Heap, No. of Major GC, Total Classes Loaded, GC 

Time Spent Per Minute, Average Response Time, Minor GC 

time spent, No. of Minor GC and Process CPU Burnt 

(ms/min).  

 

Both SARIMA and VAR algorithms were tried on 

Multivariate datasets. The results in the below graph showed 

less robust predictions and forecast. The deviation between 

forecasted and actual values were very high. Also, predictions 

generated abnormally very high spikes. Thus, the dependent 

features that was available and enabled in production 

infrastructure of AppDynamics considered for Multi Variate 

Analysis of Major GC did not help in forecasting the future 

accurately. There might be 100s of attributes of JVM that 

might be contributing to Major GC events. Determining these 

contributing attributes or metrics are out of scope of this 

paper. Also due to Memory & CPU overhead involved, only 

very few key metrics are enabled in production infrastructures 

of AppDynamics.  

 

Another drawback of this MTS approach is, it requires lot of 

processing time. Considering the disadvantages and poor 

results from PoCs, this method was not considered. 

 

 
Fig. 5. Forecast using VAR for Seasonality 

 

 
Fig. 6. MTS Forecast using VAR 
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VII.CONCLUSION 

In this paper, we proposed a novel AIOps framework for 

Major GC forecasting to achieve the goal of automating the 

detection of abnormality in event patterns for future time using 

SARIMA based time series forecasting model for critical 

microservices hosted on large scale cloud platform such as 

PCF. We presented the general motivation behind the 

proposed framework to provide intelligent and automated 

forecast of Major GC patterns for short future time periods by 

fitting the model with immediate past data. Our framework 

provides proactive assistance to performance engineering and 

production support teams by sending critical alerts whenever 

future patterns forecasted breaches the set threshold limits and 

enables them to take timely early corrective actions to avoid 

system performance issues. Overall, the models developed 

using this framework has the ability to accurately provide 

early detection of trend abnormality and seasonal fluctuations 

for the near future time. In our proposed methodology, we 

presented important steps in a sequential flow including Data 

Exploration, Data Pre-Processing, Stationarity Conversion, 

Time Series Forecasting and Alerting. We performed the 

evaluation of the forecasting results of the ML models using 

Hit Ratio and Population Deviation metrics. Our evaluation 

results showed forecast models that generated good hit ratio 

greater than 65% (max reaching up to 85%). Thus, our paper 

shows the practicability of forecasting a dynamically varying 

Major GC events and early detection of any abnormal 

behavior in patterns of the same in future time using statistical 

machine learning methods. 
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